Paper on Using Unity3D for Archaeological Interpretation

image paper.jpeg

Just a quick note to say that I have published an article for Archaeological Science: Reports regarding the use of a Unity3D script to calculate solar alignment at Ggantija, Gozo.

It is unfortunately not as open access as I would like, but I’ve been told that the article will be available for viewing for the next 50 days at,rVDBK0IJ

If you have an interest in using 3D Reconstruction for analysis do check it out, and feel free to get in contact at for more information.



Paul Reilly and the origins of 3D Reconstruction

Archaeology is all about looking at the past to understand the present, and in a similar guise to fully understand the basics of modern theory we have to delve into its origins. For this purpose, today I would like to take you back to 1989, when computer Visualisation was in its infancy.

The paper “Data Visualisation in Archaeology” by Paul Reilly (1989), and the later book “Archaeology and the Information Age” by Reilly and Rahtz (1992), were a crucial stepping stone for popularising 3D Reconstruction and introducing the theoretical background that is still important today.

3D Reconstruction saw its first applications in archaeology as early as 1985, when Woodward created a model of Roman Bath and of Caerleon, adapting software originally designed for industrial engineering (Smith 1985; Delooze and Wood 1991; Palamidese et al. 1993). Between then and 1989, a number of models had been created. Yet, the theoretical background was quite sterile, partly due to a division of roles between the researcher (archaeologist) and the modeller (computer designer).

Reilly’s paper “Data Visualisation in Archaeology” (1989) starts with a common problem in archaeology: the abundance of data. Due to the destructive nature of the excavation methodologies archaeologists resort to extensive recording of contexts, generating vast quantities of information in the process. Reilly demonstrates through examples what it it possible to achieve with this data. Apart from distribution maps which are more GIS territory, he uses examples of WINSOM models to demonstrate the potential for presentation of 3D modelling. More importantly, he argues that

“[Modelling] allows the researcher to demonstrate in strong visual terms how the interpretation relates directly to the collected data. […] it stimulates the researcher to look for further information. This may involve the application of extra analytical experiments on the existing data, or it may require the formulation of a completely new research design to answer the outstanding questions. – Reilly (1989) pp.577”


“[…] reconstructions require the modeller to define explicitly each and every element in the model and their spatial relationship to one another. The definition of the model forces the researchers to reconsider the original data, which can focus attention on problem areas and gaps, thus causing them to observe, or record differently, certain types of evidence in a future investigation. – Reilly (1989) pp.578“

These ideas are found again in a section Reilly contributed to Burridge et al. (1989), in which he argues that 3D Modelling can bring to light discrepancies in the original data.

Following “Data Visualisation in Archaeology”, Reilly published a series of articles that helped solidify his theories. Reilly and Shennan (1989) look at presentation, arguing that 3D navigation can help understand archaeological contexts by displaying large quantities of data in a small amount of time. “Towards a Virtual Archaeology” (1990) provides an overview of examples in 3D Reconstruction, and demonstrates the use in recreating monuments. It also outlines how this software could be applied to the teaching of archaeological excavation. In his 1991 contribution to Computing in Archaeology, he emphasises the importance for analysis and presenting, while also recognising that realistic models may lead to the assumption of “absolute truth”. Many of the concepts here expressed are still exceptionally relevant to modern theory, and have been debated by scholars for the three decades following Reilly’s publications.

His most important contribution is however “Archaeology and the Information Age”, edited with Rhatz (1992). This collection of truly fascinating articles are the founding stone for all future 3D Reconstruction, as well as other fields of digital media in archaeology. “Archaeology and the Information Age” explores the use of 3D for interpretation, arguing that pretty pictures should not be the main goal.  Through various examples, Reilly demonstrates the potential of 3D modelling for analysis, citing the reconstructions of Sulis Minervae, Bath and many others. Other authors in the book discuss issues of accuracy, simulation and subjectivity (I particularly enjoyed Molyneaux 1992).

Throughout the 1990s Visualisation saw an exceptional rise in popularity and the theoretical background developed in these years is still applicable today. Yet it all started with a handful of researchers, of which Reilly was the forefront (with the help of Shennan and Rahtz). If you are just starting to get into Visualisation, reading some of his works is a great place to start.



Burridge, J. M., Collins, B. M., Galton, B. N., Halbert, A. R., Heywood, T. R., Latham, W. H., Phippen, R. W., Quarendon, P., Reilly, P., Ricketts, M.V., Simmons, J., Todd, S. J. P., Walter, A. G. N. and Woodwark, J. R. (1989). The WINSOM solid modeller and its application to data visualisation. IBM Systems Journal pp.548-568.
Delooze, K. and Wood, J. (1991). Furness Abbey Survey Project – The Application of Computer Graphics and Data Visualisation to Reconstruction Modelling of an Historic Monument. Computer Applications and Quantitative Methods in Archaeology pp.140-148.
Molyneaux, B. (1992). From virtual to actuality: the archaeological site simulation environment. In: Reilly, P. and Rahtz, S. Archaeology in the Information Age pp.192-198.
Palamidese, P., Betro, M. and Muccioli, G. (1993). The Virtual Restoration of the Visir Tomb. Visualisation pp.420-424.
Reilly, P. (1989). Data visualisation in archaeology. IBM Systems Journal 28(4) pp.569-579.
Reilly, P. (1990). Towards a virtual archaeology. In: Lockyear, K. and Rahtz, S. Computer Applications in Archaeology pp.133-139.
Reilly, P. and Rahtz, S. (1992). Archaeology in the Information Age. Routledge: London.
Reilly, P. and Shennan, S. (1989). Applying Solid Modelling and Animated Three-Dimensional Graphics. Surface And Solid Modelling and Image Enhancement pp.157-165.
Smith, I. (1985). Sid and Dora’s bath show pulls in the crowd. Computing pp.7-8.


Functionality vs Realism in 3D Modelling

I’m currently looking through the literature on 3D reconstruction as part of my PhD, and I thought I would share here some useful points I am gathering through this process. I’ve specifically been looking at publications prior to the year 2001, attempting to discover the ideas that created this field in the first place and the theoretical and technical background to the methodology. Many of the arguments I am encountering have strong resonance with today, and are crucial to understand present discussion.

One of the most interesting points I have come across is the debate between those who strive for realism in reconstruction, and those who reject it.


Realistic Modelling

‘Realist’ archaeologists are harder to spot, as the computer limitations of the time allowed for little realism. Collins et al. (1993), Burton et al. (1997), Novitski (1998), Worthing and Counsell (1999) and Addison (2000) strive for photorealism in their models, tacitly expressing the need for faithful models. Later authors such as Guttierez et al. (2006) and especially Chalmers (Chalmers 2002, Devlin and Chalmers 2001, Chalmers and Debattista 2009) have attempted to create absolute models through the careful reconstruction of the environment, as well as of the architecture itself.


Functional modelling

In earlier literature the advocates of a functional style are more vocal. Fletcher and Spicer (1992), Salisbury et al. (1994), Winkerbach and Salesin (1994), Lansdown and Schofield (1995), Miller and Richards (1995), Pang et al. (1997), Roberts and Ryan (1997) and Strothotte et al. (1999) express dissatisfaction with realistic models, preferring a more subtle and accurate representation. Their main concern is with the risk of ‘absolute truth’, as

“[…] a photorealistic image […] suggests that detailed information has been
amassed about the objects being shown. Such images […] lead(s) viewers to the conclusion that the information is correct and contains a high degree of certainty and accuracy.” – Strothotte et al. (1999 p.1).



I have already discussed the issues of accuracy and the representation of uncertainty, so I will not delve into this subject at this point. It is however important to note that realistic and functional researchers are coming from two very distinct starting points. Realistic modelers tend to focus on the user experience. The reconstructions are designed for presentation, and the more visually stunning the result is, the more the users will feel involved with it. It is a path which leads to ‘presence’, haptic sheds and interactive models.

Frieman and Gillings (2007) analyse how people ‘perceive’ 3D reconstructions and virtual environments. Not only do they advocate for more realistic experiences, but they believe that this experience must encapsulate all senses.

“Instead, we have argued that, rather than analyse how space is viewed, we should fold vision back into the mix of the sensorium and focus instead on how space is perceived.” – Frieman and Gillings (2007 p.9).

Functional modelers are interested in the interpretation of archaeological data. In the words of van Dam et al:

“Scientific visualization isn’t an end in itself, but a component of many scientific tasks that typically involve some combination of interpretation and manipulation of scientific data and/or models. To aid understanding, the scientist visualizes the data to look for patterns, features, relationships, anomalies, and the like. Visualization should be thought of as task driven […]” – van Dam et al. (2000 p.27).

Although 3D Reconstructions are a visual means of presenting data, this does not mean they are an end product. They have the potential to be used to interpret, and as such they need to be simplified and abstract:

“In order to communicate […] complex information effectively, some form of visual abstraction is required.” – Winkerbach and Salesin (1994 p.1).

Functional modeling is ideal for the exchange of information, as too much detail can distract from the primary focus of the model. For presentation to the public, non-photorealistic models are not as involving, but they can be purposed to explain certain elements, and are especially important for the presentation of uncertainty (Winkerbach and Salesin 1994; Lansdown and Schofield 1995).


Intermediate models

Some authors approach the question differently, reaching conclusions that draw from both sides of the argument. One of the most interesting articles on this topic is Engaging places by Mark Gillings (1997). Gillings uses the term ‘hyperreal’ to describe 3D reconstructions, as for him the models are a separate entity from what they are a representation of, which go beyond the original. His main focus is on engagement. Researchers can strive for authenticity, but they will never be able to replicate the same conditions perfectly. No amount of detail inputted can accurately record the shape of every stone or the lighting of a room. Gillings however suggests that this is not even necessary, as the model’s ‘experiental depth’ is of higher importance.

Lansdown and Schofield (1995) emphasise the subjective nature of Visualisation, describing how even photographs are subjective. The way the position of the camera, the single-moment recording and the limitations of the frame mean the photographer has substantial input on the image. Similarly, even the most accurate of models are still based on subjective observations and the way they are presented cannot be objective or ‘perfect’.



Personally, I believe the division between realistic and functional models is unnecessary, as they deal with completely separate issues and are not truly in conflict with one another provided we adopt a thoughtful methodology. If the aims of the project are clear and the research thorough, then the models can assimilate aspects of either ideology. With regards to presentation, if the reconstruction’s aim is to explain or investigate specific elements, then a non-photorealistic model will provide a much better basis for research. If instead the project is used to create an emotional response from the user, photorealism will be more successful.



Addison, A. C. (2000). Emerging Trends in Virtual Heritage. IEEE Multimedia Vol.7 No.2 pp.22-25.

Burton, N. R., Hitchen, M. E. and Bryan, P.G. (1997). Virtual Stonehenge: a fall from disgrace? Proceedings of CAA 97 pp.16-21.

Chalmers, A. (2002). Very realistic graphics for visualising archaeological site reconstruction. Proceedings of the 18th Spring Conference on Computer Graphics pp. 7-12.

Chalmers, A. and DeBattista, K. (2009). Level of realism for serious games. 2009 Conference in Games and Virtual Worlds for Serious Applications pp.225-232.

Collins, B., Williams, D., Haak, R., Trux, M., Herz, H., Genevriez, L., Nicot, P., Brault, P., Coyere, X., Krause, B., Kluckow, J. and Paffenholz, A. (1993). The Dresden Frauenkirche – rebuilding the past.  In Wilcock, J. and Lockyear, K. Computer Applications and Quantitative Methods in Archaeology Oxford pp.19-24.

Devlin, K. and Chalmers, A. (2001). Realistic visualisation of the Pompeii frescoes. Proceedings of the 1st International Conference on Computer Graphics, Virtual Reality and Visualisation pp.43-48.

Fletcher, M. and Spicer, D. (1992). The display and analysis of ridge-and-furrow from topographically surveyed data. In: Reilly, P. and Rahtz, S. Archaeology in the Information Age pp.59-76.

Frieman, C. and Gillings, M. (2007). Seeing is perceiving? World Archaeology. Vol.39 No.1. Viewing space pp.4-16.

Gillings, M. (1997). Engaging Place: a Framework for the Integration and Realisation of Virtual-Reality Approaches in Archaeology. In: Dingwall, L., Exon, S., Gaffney, V., Laflin, S. and van Leusen, M. Archaeology in the Age of the Internet.

Gutierrez, D., Sundstedt, V., Gomez, F. and Chalmers, A. (2006). Dust and light: predictive virtual archaeology. Journal of Cultural Heritage 8 pp.209-214.

Lansdown, J. and Schofield, S. (1995). Expressive Rendering: A Review of Nonphotorealistic Techniques. IEEE Computer Graphics and Applications pp.29-37.

Miller, P. and Richards, J. (1995). The Good, the Bad, and the Downright Misleading: Archaeological Adoption of Computer Visualisation. In: Huggett, J. and Ryan, N. Computer Applications and Quantitative Methods in Archaeology. Oxford: Tempus Reparatum pp.19-22.

Novitski, B. J. (1998). Reconstructing lost architecture. Computer Graphics World Vol.21 No.2.

Pang, A. T., Wittenbrink, C. M. and Lodha, S. K. (1997). Approaches to uncertainty visualisation. The Visual Computer pp.370-390.

Roberts, J. C. and Ryan, N. (1997). Alternative Archaeological Representations within Virtual Worlds. In: Brown, R. 4th UK Virtual Reality Specialist Interest Group Conference – Brunel University pp.182-196.

Salisbury, M. P., Anderson, S. E., Barzel, R. and Salesin, D. H. (1994). Interactive pen-and-ink illustration. Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques pp.101-108.

Strothotte, T., Masuch, M. and Isenberg, T. (1999). Visualizing Knowledge about Virtual Reconstructions of Ancient Architecture. Computer Graphics International.

Van Dam, A., Forsberg, A. S., Laidlaw, D. H., LaViola, J. J., and Simpson, R. M. (2000). Immersive VR for Scientific Visualisation: A Progress Report. Computer Graphics and Applications Vol.20 No.6 pp.26-52.

Winkenbach, G. and Salesin, D., H. (1994). Computer-generated pen-and-ink illustration. Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques pp.91-100.

Worthing, D. and Counsell, J. (1999). Issues arising from computer-based recording of heritage sites. Structural Survey Vol.17 No.4 pp.200-210.

Part 3 – Sources and Paradata

Before going into the bulk of how to model an archaeological site and why do it, I would like to spend a moment discussing the research that should be at the basis of the model itself. The fact that 3D Reconstruction is in its infancy brings many advantages and disadvantages to the table. On the one part, it is exciting to think there is so much we do not know as it means endless applications are there just waiting to be discovered. On the other hand however, there is a distinct lack of consistent methodology between projects and while some publication are clearly founded on extensive research (Dawson et al. 2011 amongst many others), others seem to be more loosely interpreted.

Fig.1 – The first steps in modelling, based on a plan of the site to scale.

This is one of the reasons behind ‘paradata’, a term that has recently been applied to the field. To understand paradata we need to first discuss metadata. Especially in computer science, many authors have lamented the inability to replicate experiments involving code (Hafer and Kirkpatrick 2009; Boon 2009; Ducke 2012; Hayashi 2012). In the words of Marwick:

“This ability to reproduce the results of other researchers is a core tenet of scientific method, and when reproductions are successful, our field advances (Marwick 2016, pp.1).”


“A study is reproducible if there is a specific set of computational functions/analyses (usually specified in terms of code) that exactly reproduce all of the numbers and data visualizations in a published paper from raw data (Marwick 2016, pp.4).”

Essentially the debate is that publishing results is not enough, but that instead we should include additional information, such as settings used in a program or the raw code. This collection of information is referred to as ‘metadata’. Some authors on the other hand have taken it a step forward, arguing that we should include descriptions of the process, a discussion of the choices made and the probabilities (Denard 2009; Beacham 2011, D’Andrea and Fernie 2013). This ‘paradata’ is best described in the London Charter, which is the first attempt to creating a methodology in 3D Reconstruction:

“Documentation of the evaluative, analytical, deductive, interpretative and creative decisions made in the course of computer-based visualisation should be disseminated in such a way that the relationship between research sources, implicit knowledge, explicit reasoning, and visualisation-based outcomes can be understood (Denard 2009, pp.8-9).”

Given that a major critique in 3D Reconstruction is accuracy (Miller and Richards 1995; Richards 1998; Devlin et al. 2003; Johnson et al. 2009), paradata is our way to defend ourselves. While it is impossible to create the perfect model, by demonstrating the process behind the reconstruction allows a user to understand the interpretation given and draw their own conclusions.

Roman Villa 4
Fig.2 – A highly speculative Roman Villa. Without knowledge of the process it is impossible to know how accurate each element is.

One of the elements we have mentioned previously are sources. While the process itself has to be methodical in order to gain accurate results, the sources provide the wireframe upon which the interpretation can take place. It therefore essential that the sources are well researched and well documented. For this purpose I like the classification proposed by Dell’Unto et al. (2011), which sees different categories based on accuracy:

  • Reconstruction by Objectivity: sources based on in situ elements, like plans, 3D scans, archives.
  • Reconstruction by Testimony: illustrations, literary sources, notes.
  • Reconstruction by Deduction: elements that can be deduced from in situ remains, but that are not actually there.
  • Reconstruction by Comparison: based on other sites, this is actually quite an important one as a lot of features carry on between remains of the same regions.
  • Reconstruction by Analogy of Styles: especially for decoration, looking at other stylistic elements that have been preserved can help make the whole model look more realistic.
  • Reconstruction by Hypothesis: an essential part of reconstruction, but the most inaccurate.

Of course, the more we go down this ladder, the more inaccurate the sources are. Yet it is by combining all the different sources that we get the finished model. Paradata can help with determining which sources were used for each part of the model, and therefore provide information of the model as a whole.

Fig 3 = Partly completed model of a Greek house, based on plan, excavation reports and site comparison.

In conclusion, there are many sources that can be used when constructing a model and although some are more precise than others, all of them contribute to the final result. If they are applied methodologically and the process is recorded, we can provide an accurate and reliable reconstruction.

Over the next posts I will start looking at SketchUp for modelling, although the ideas will carry over to other software such as 3Ds Max.


Beacham, R. C. (2011). Concerning the Paradox of Paradata. Or, “I don’t want realism; I want magic!”. Virtual Archaeology Review Vol.2 No.4 pp.49-52.

Boon, P., Van Der Maaten, L., Paijmans, H., Postma, E. and Lange, G. (2009). Digital Support for Archaeology. Interdisciplinary Science Reviews 34:2-3 pp.189-205.

D’Andrea, A. and Fernie, K. (2013). CARARE 2.0: a metadata schema for 3D Cultural Objects. Digital Heritage International Congress Vol.2 pp.137-143.

Dawson, P., Levy, R. and Lyons, N. (2011). “Breaking the fourth wall”: 3D virtual worlds as tools for knowledge repatriation in archaeology. Journal of Social Archaeology 11(3) pp.387-402.

Dell’Unto, N., Leander, A. M., Ferdani, D., Dellepiane, M., Callieri, M., Lindgren, S. (2013). Digital reconstruction and visualisation in archaeology: case-study drawn from the work of the Swedish Pompeii Project. Digital Heritage International Congress pp.621-628.

Denard, H. (2009). The London Charter: for the computer-based visualisation of cultural heritage.

Devlin, K., Chalmers, A. and Brown, D. (2003). Predictive lighting and perception in archaeological representation. UNESCO World Heritage in the Digital Age.

Ducke, B. (2012). Natives of a connected world: free and open source software in archaeology. World Archaeology 44:4 pp.571-579.

Hafer, L. and Kirkpatrick, A. E. (2009). Assessing Open Source Software as a Scholarly Contribution. Communication of the ACM Vol.52 No.12 pp.126-129.

Hayashi, T. (2012). Source Code Publishing on World Wide Web. International Conference on Advanced Information Networking and Applications Workshops pp.35-40.

Johnson, D. S. (2009). Testing Geometric Authenticity: Standards, Methods, and Criteria for Evaluating the Accuracy and Completeness of Archaeometric Computer Reconstructions. Visual Resources 25:4 pp.333-344.

Marwick, B. (2016). Computational Reproducibility in Archaeological Research: Basic Principles and a Case Study of Their Implementation. Journal of Archaeological Method and Theory pp.1-27.

Miller, P. and Richards, J. (1995). The Good, the Bad, and the Downright Misleading: Archaeological Adoption of Computer Visualisation. In: Huggett, J. and Ryan, N. Computer Applications and Quantitative Methods in Archaeology. Oxford: Tempus Reparatum pp.19-22.

Richards, J. D. (1998). Recent Trends in Computer Applications in Archaeology. Journal of Archaeological Research Vol.6 No.4 pp.331-382.

Part 2 – 3D Reconstruction Literature

In this section I would like to go through some projects I have been reading about that I think are very useful for understanding 3D Reconstruction in Archaeology. Before delving into the practicalities of the technology it is important to assess where the field is at right now.

An image from Champion et al. (2012) showing the reconstructed city of Palenque.

If you look through the literature, 3D Reconstruction is often scarcely documented and results are limited. The three major critique points I have encountered are to do with accuracy, lack of human element and on use. Here is a brief overview:

  • Accuracy: studies lack background information on how the model was achieved, and create the false idea that the reconstruction is absolutely certain, while often it is simply one of many interpretations.
  • Lack of human element: based on Thomas (2004a; 2004b) and Tilley (2004), 3D Reconstruction is seen as a purely visual subject, alienated from human experience.
  • Use: 3D modelling is used simply to present sites, and are seen as add-ons. In reality, they provide great scope for interpretation.

The first paper I would like to mention is “Digital reconstruction and visualisation in archaeology” by Dell’Unto et al. (2012). On the subject of accuracy in 3D Reconstruction, Dell’Unto et al. propose the use of a series of levels of reconstruction: by identifying and recording the sources for each portion of the model, it is possible to assess the relative accuracy of each part. The first level of reconstruction is based on in situ elements, which are nearly certain, while the last level is dedicated to purely hypothetical reconstructions. This is a great approach as it means the modeller is accountable for the model, but at the same time they have the freedom to experiment as it is clear from the recording what they have done.

Levels of reconstruction by Dell’Unto et al. (2012).

On the topic of human experience, I can mention a few papers that implicitly refute the ideas proposed by Tilley and Thomas. While 3D modelling is indeed an exceptionally visual subject, it is not simply about looking at images. An entire current of thought deals with ‘presence’, the feeling of belonging a person gets when exploring a 3D environment. It seems that people get involved with the models to the point they ‘experience’ them, as if they were present on site. So while Tilley and Thomas refuse Visualisation as they prefer to explore the site in first person, I would argue that you can do that with 3D Reconstruction. An author I have come across which deals with ‘presence’ is Ch’ng (2009; Ch’ng and Stone 2006; Ch’ng et al. 2011), although I think the forerunner of this field is Chalmers (2002; Chalmers and DeBattista 2009; Devlin and Chalmers 2001; Devlin et al. 2003; Gutierrez et al. 2006). He has made exceptional steps in recreating archaeological sites with near perfect realism, in order to increase the sense of ‘presence’ people experience. His work on illumination is unmatched, and his articles are well worth a read.

chalmers and debattista
Different lighting effects as studied by Chalmers and DeBattista (2009).

Additionally the work of Dawson and Levy (2006; Dawson et al. 2007, 2011, 2013) are an exceptional testimony of how people respond to 3D environments. They recreated a Thule hut and then invited some members to explore them, recording their reactions and showing their emotional attachment.

Dawson and Levy are also prime examples of 3D Reconstruction being used for interpretation, as their analysis of hut building showed that there was significant reuse of bone structures. Many others have explored the utility of this type of technology, so it is hard to pinpoint individual papers of significance. Champion et al. (2012) use gaming software to educate users on the archaeology of the Palenque city. This is by far one of the best studies I have encountered, and I believe they are the forerunners of ‘serious games’ for archaeology.

champion 2
Another view of the ‘serious game’ by Champion et al. (2012).

Similarly the work of Forte et al. (2012) shows much promise in the same area. Finally, the work of Murgatroyd et al.(2011) is not strictly related to reconstruction, but the simulations they have run on Byzantine army movement is very important for understanding the reach of scripting, which can be combined to 3D reconstruction.

I hope this has provided you with an overlook of all the potential applications of 3D software. Over the next couple of weeks I aim to outline the reconstruction process, in order to open up the path to scripting.



Ch’ng, E. and Stone, R. J. (2006). 3D Archaeological Reconstruction and Visualisation: An Artificial Life Model for Determining Vegetation Dispersal Patterns in Ancient Landscapes. Proceedings of the International Conference on Computer Graphics, Imaging and Visualisation.

Ch’ng, E. (2009). Experimental archaeology: is virtual time travel possible? Journal of Cultural Heritage 10 pp.458-470.

Ch’ng, E., Chapman, H., Gaffney, V., Murgatrayd, P.. Gaffney, C. and Neubauer, W. (2011). From sites to landscapes: how computer technology is shaping archaeological practice. IEEE Computer Society 11 pp.40-46.

Chalmers, A. (2002). Very realistic graphics for visualising archaeological site reconstruction. Proceedings of the 18th Spring Conference on Computer Graphics pp. 7-12.

Chalmers, A. and DeBattista, K. (2009). Level of realism for serious games. 2009 Conference in Games and Virtual Worlds for Serious Applications pp.225-232.

Champion, E., Bishop, I. and Dave, B. (2012). The Palenque project: evaluating interaction in an online virtual archaeology site. Virtual Reality 16 pp.121-139.

Dawson, P., Levy, R., Gardner, D. and Walls M. (2007). Simulating the Behaviour of Light inside Arctic Dwellings: Implications for Assessing the Role of Vision in Task Performance. World Archaeology Vol.39 No.1 pp.17-35.

Dawson, P., Levy, R. and Lyons, N. (2011). “Breaking the fourth wall”: 3D virtual worlds as tools for knowledge repatriation in archaeology. Journal of Social Archaeology 11(3) pp.387-402.

Dawson, T., Vermehren, A., Miller, A., Oliver, I. and Kennedy, S. (2013). Digitally enhanced community rescue archaeology. Proceedings of First International Congress on Digital Heritage pp.29-36.

Devlin, K. and Chalmers, A. (2001). Realistic visualisation of the Pompeii frescoes. Proceedings of the 1st International Conference on Computer Graphics, Virtual Reality and Visualisation pp.43-48.

Devlin, K., Chalmers, A. and Brown, D. (2003). Predictive lighting and perception in archaeological representation. UNESCO World Heritage in the Digital Age.

Dell’Unto, N., Leander, A. M., Ferdani, D., Dellepiane, M., Callieri, M., Lindgren, S. (2013). Digital reconstruction and visualisation in archaeology: case-study drawn from the work of the Swedish Pompeii Project. Digital Heritage International Congress pp.621-628.

Forte, M., Lercari, N., Onsurez, L., Issavi, J. and Prather, E. (2012). The Fort Ross Virtual Warehouse Project: A Serious Game for Research and Education. 18th International Conference on Virtual Systems and Multimedia pp.315-322.

Gutierrez, D., Sundstedt, V., Gomez, F. and Chalmers, A. (2006). Dust and light: predictive virtual archaeology. Journal of Cultural Heritage 8 pp.209-214.

Levy, R. and Dawson, P. (2006). Reconstructing a Thule whalebone house using 3D imaging. IEEE MultiMedia. Vol.13 No.2 pp.78-83.

Murgatroyd, P., Crenen, B., Theodoropoulos, G., Gaffney, V. and Haldon, J. (2011). Modelling medieval military logistics: an agent-based simulation of a Byzantine army on the march. Computational and Mathematical Organization Theory Vol.18 No.4 pp.488-506.

Thomas, J. (2004). Archaeology and Modernity. London: Routledge.

Thomas, J. (2004). The Great Dark Book: Archaeology, Experience, and Interpretation. In: Earle, T. and Pebbles, C. S. A Companion to Archaeology. Oxford: Blackwell Publishing pp.21-36.

Tilley, C. (2004). The materiality of stone: exploration in landscape phenomenology. Oxford: Berg.

PART 1 – Visualisation


“Visualisation” is a term that is used quite consistently in recent archaeological publications. It refers to the reconstruction of archaeological evidence through the use of computer software, although it originates in the practise of recording the site using 2D drawings which has been around for a few centuries. Although the meaning of the word and what it entails fluctuates somewhat, I’ve come to identify three types of technologies that fall within this category:

  • Photogrammetry
  • Laser Scanning
  • 3D Reconstruction

Photogrammetry is also referred to as Structure From Motion, and differs from the other methods as the 3D models are based on photographs (Pedersini et al. 2000). Similarly to laser scanning, the result is a high density point cloud, with photorealistic textures.

Laser scanning is a powerful tool widely used in large scale recording. It uses laser measurements to calculate the position of points in a site, and like Photogrammetry it produces a textured mesh, although generally laser scanning models are much more dense and therefore more accurate.

3D reconstruction is the method we will be primarily dealing with. It is less accurate than Photogrammetry and laser scanning, and the results are less realistic. It does however possess some distinct advantages. Reconstructed models are easily manipulated, and often represent elements of a site that have been lost (Fig.1). They can also be combined with gaming software to create interactive environments (I could cite many authors here, but just as a taster I would recommend reading Champion et al. 2012).

image 1
Fig.1 = 3D Reconstruction of the site of Ggantija, Gozo.

The three methods have very different aims, and as such it is important to know what you want to achieve before applying them:

  • For small and medium scale recording Photogrammetry is excellent (Scopigno 2012). It is very cheap and fast, and possesses the accuracy and visual effects that are necessary for recording and presenting. It is ideal for cataloguing finds or small scale excavations, although it can be used for larger features if necessary (see the current Must Farm excavation models by Donald Horne for more details: The fact it possesses lower points than laser scanning makes it easy to manage, and it requires little training.
  • For detailed models and large sites Laser Scanning is the tool of choice. More expensive and computationally challenging than Photogrammetry, laser scanning creates precise models that are perfect for recording, presenting and some interpreting. A great example is the work of John Meneele ( who has been analysing stone decay be comparing models taken in different years. I personally have little experience with laser scanning, but the results I have seen have shown a lot of promise.
  • 3D Reconstruction is mainly for presentation and interpretation. Although some arguments have been put forward on using 3D reconstructions for metadata recording, this is not where the technology shines (Reilly 1990; Barreau et al. 2013). 3D reconstructions can show a site “as it was” rather than “as it is”, leading to a more vivid understanding of archaeological contexts (Miller and Richards 1995; Lewin and Gross 1996). For the general public it is perfect, and it can be made highly interactive in order to further increase user comprehension of the archaeology. As for interpretation, the use of scripting allows a number of tools to be created in order to answer archaeological questions. One of the projects I have been working on was looking at analysing solar alignment at a Maltese site, and through a custom-written script I concluded the site is illuminated on the winter solstice (Fig.2). While Photogrammetry and Laser scanning shine with precision and photorealism, 3D Reconstruction truly dominates in presentation and interpretation.


overall image
Fig.2 – Overview of the script interface.

It is important however to mention how these methodologies are not mutually exclusive. Little work has been done in combining different techniques, but the results show much promise. A previous article on this blog discussed virtual museums, and the combination of a 3D reconstructed environment, with Photogrammetric models within.

In conclusion, there is a lot of technology put there, and although research is slowly unveiling the advantages of each there is much to be discovered still. With 3D Reconstruction we are barely scratching the surface, and only in the last 10 years we have had custom written scripts for archaeology. It may take a while, but once we uncover what is possible, archaeology will really reap the results.


In the next post I will be looking at previous work in 3D reconstruction, with a few examples of significant projects that have helped shape the methodology.



Barreau, J., Gaugne, R., Bernard, Y., Le Cloiree, G. and Gouranton, V. (2013). The West Digital Conservatory of Archaeological Heritage Project. Digital Heritage International Congress. Vol.1 pp.547-554.

Champion, E., Bishop, I. and Dave, B. (2012). The Palenque project: evaluating interaction in an online virtual archaeology site. Virtual Reality 16 pp.121-139.

Lewin, J. S. and Gross, M. D. (1996). Resolving Archaeological Site Data With 3D Computer Modeling: The Case of Ceren. Acadia pp. 255-266.

Miller, P. and Richards, J. (1995). The Good, the Bad, and the Downright Misleading: Archaeological Adoption of Computer Visualisation. In: Huggett, J. and Ryan, N. Computer Applications and Quantitative Methods in Archaeology. Oxford: Tempus Reparatum pp.19-22.

Pedersini, F., Sarti, A. and Tubaro, S. (2000). Automatic monitoring and 3d reconstruction applied to cultural heritage. Journal of Cultural Heritage 1 pp.301-313.

Reilly, P. (1990). Towards a virtual archaeology. In: Lockyear, K. and Rahtz, S. Computer Applications in Archaeology pp.133-139.

Scopigno, R. (2012). Sampled 3D models for Cultural Heritage: which uses beyond visualisation? Virtual Archaeology Review Vol.3 No.5 pp.109-115.

Agisoft Photoscan

If you have been following this blog for some time, you will know that when it comes to Photogrammetric reconstructions I have always been a strong supporter of 123D Catch by Autodesk. I find that it is by far the easiest program to use, yet the results are still amazing.

Recently they have released a paid Pro version that provides all the same results but allows the program to be used commercially. I think that is utterly brilliant, as it means it doesn’t halt research, but it still allows revenue for the developers if the user is himself making money from the software.

Having said all this, I’ve started investigating new software, to see if there is anything that can bring improvement to what I already have with 123D Catch. Up to now, the best solution I have found is Agisoft Photoscan, which I had already used in the past but not to its full extent.


Previously, I only managed to create low quality models, due to an error in the program, but I have now managed to make really good models of both objects and features. As such, here are the pros and cons of Photoscan compared to 123D Catch:


  • Quality: This is the best starting point. With medium and high settings the quality can be really good, and generally you can get many more points than 123D Catch. With lower settings however the results do fluctuate.
  • Control over process: If you are looking into more complex Photogrammetry this passage is very important. In 123D Catch you upload the images and get the result. That is it. In Photoscan you can go through all the stages (photo alignment, sparse cloud, dense cloud, mesh, texture) and change the settings to improve the finished product. You can even export the points as they are, and alter them using other software. It allows much more flexibility.
  • More tools: You can select points, create masks, remove points based on certain parameters and more. Often these are not needed, but on occasion they can be just what you require.
  • Many photos: 123D Catch struggles when you upload more than 50 photographs, and the results suffer. In Photoscan this issue doesn’t exist, and you can easily make models with hundreds of images. This is perfect for making large scale models, as the more images you have, the more accurate it is.
  • No internet required: Often you find yourself in situations in which the internet is not great or is totally non-existent. Photoscan doesn’t need a connecetion to an external server to process the model, so even if the computer is not connected, it still works.


  • Paid software: Although as software goes this is well priced, for people doing non-commercial work it is always difficult to have to keep up with the expenses for programs.
  • Memory: 123D Catch uses an external server, which means it does not use your own computing power. If you are trying to get high quality models, Photoscan will put a serious strain on your computer, and often it will even crash due to insufficient memory.
  • Time: I can get a model done in 123D Catch in 5 minutes if the internet is good. The worst I have ever had is probably an hour. With Photoscan I have had to wait actual days for models to be complete, and sometimes I waited many hours before getting an insufficient memory message.
  • Simplicity: If you are just starting out with Photogrammetry 123D Catch is still the easiest of all programs I have used.

Overall, I think I would use 123D Catch for small scale and quick stuff, while Photoscan would be useful for large scale, or when I am trying to research something specific, so I am more in control of the results.


Photogrammetric Recording of Subvertical Pits


Up to now in my blog I have been trying to outline the uses of Photogrammetry in the two main areas of archaeology, recording and interpretation. Some things I have discussed were specific to preserving as much data as possible of an archaeological feature or object, by creating a virtual copy of it. Other posts were concerned with what can be done once that model has been made, to further our understanding.

This post is mostly about recording a specific type of feature, but it opens up some possibilities to help interpret them as well.

On some occasions during archaeological excavations we happen to stumble across some particular pits that present particular difficulty when planning. In these cases the issue is that the sides of the pit are not gradual or even vertical, but they actually overcut the side, giving it a bulging shape. During an excavation at Ham Hill, Somerset, one of the pits there had this particular shape due to it’s use. It was probably used to store grain, and the presence of a smaller hole at the top meant that the preservation would have been better.


The plans draw of the pit were excellent, but even so it is difficult to convey the true shape of the feature using only 2D resources. I therefore created a model of it, by taking photographs like I normally would for a regular feature, with the addition of a few more from within the feature itself, by dropping the camera within it. The results are as follow:


Not only can you view the feature from the top, but it is even possible to see it from the sides, and rotate it that way, making it ever so clear how the feature was even now it is gone.


In addition to that, the bulge is much clearer, and it is easier to draw conclusions on its use. As a permanent record it is excellent, as not only do we not loose any information, but we can also gain more than what we could see being limited by the simple top view.

It also opens up new possibilities. As of yet I have not experimented much with Maya 3D, however I have had a brief overview of how the program works and what it is capable of. One of my colleagues once showed me how to reconstruct a pot from the profile, and then proceeded to calculate the capacity of the finished pot. Theoretically speaking it should be possible to import the finished model of the pit in Maya, and then use the same algorithm to calculate how much grain the pit could have had at a time, which could help understand the density of the population of the area, as well as a lot of other interesting questions.

And the technology doesn’t stop here. This may be a very specific example, but the same ideas can be applied to many different kinds of features. Those with particular bases can be easily recorded by making a model of them, or stone structures can be perfectly copied digitally rather than only drawn by hand. There is still a lot of applications to discover.